首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   520篇
  免费   89篇
  2023年   1篇
  2022年   1篇
  2021年   17篇
  2020年   4篇
  2019年   5篇
  2018年   12篇
  2017年   8篇
  2016年   10篇
  2015年   28篇
  2014年   33篇
  2013年   39篇
  2012年   43篇
  2011年   44篇
  2010年   28篇
  2009年   28篇
  2008年   54篇
  2007年   37篇
  2006年   28篇
  2005年   30篇
  2004年   27篇
  2003年   20篇
  2002年   21篇
  2001年   8篇
  2000年   4篇
  1999年   4篇
  1998年   6篇
  1997年   4篇
  1996年   2篇
  1995年   5篇
  1994年   6篇
  1993年   8篇
  1992年   7篇
  1991年   12篇
  1990年   4篇
  1989年   3篇
  1988年   4篇
  1987年   4篇
  1986年   3篇
  1985年   2篇
  1984年   4篇
  1983年   1篇
排序方式: 共有609条查询结果,搜索用时 46 毫秒
101.
Fundamental aspects of embryonic and post-natal development, including maintenance of the mammalian female germline, are largely unknown. Here we employ a retrospective, phylogenetic-based method for reconstructing cell lineage trees utilizing somatic mutations accumulated in microsatellites, to study female germline dynamics in mice. Reconstructed cell lineage trees can be used to estimate lineage relationships between different cell types, as well as cell depth (number of cell divisions since the zygote). We show that, in the reconstructed mouse cell lineage trees, oocytes form clusters that are separate from hematopoietic and mesenchymal stem cells, both in young and old mice, indicating that these populations belong to distinct lineages. Furthermore, while cumulus cells sampled from different ovarian follicles are distinctly clustered on the reconstructed trees, oocytes from the left and right ovaries are not, suggesting a mixing of their progenitor pools. We also observed an increase in oocyte depth with mouse age, which can be explained either by depth-guided selection of oocytes for ovulation or by post-natal renewal. Overall, our study sheds light on substantial novel aspects of female germline preservation and development.  相似文献   
102.
103.
Detrimental effects of hyperaccumulation of the aromatic amino acid phenylalanine (Phe) in animals, known as phenylketonuria, are mitigated by excretion of Phe derivatives; however, how plants endure Phe accumulating conditions in the absence of an excretion system is currently unknown. To achieve Phe hyperaccumulation in a plant system, we simultaneously decreased in petunia flowers expression of all three Phe ammonia lyase (PAL) isoforms that catalyze the non‐oxidative deamination of Phe to trans‐cinnamic acid, the committed step for the major pathway of Phe metabolism. A total decrease in PAL activity by 81–94% led to an 18‐fold expansion of the internal Phe pool. Phe accumulation had multifaceted intercompartmental effects on aromatic amino acid metabolism. It resulted in a decrease in the overall flux through the shikimate pathway, and a redirection of carbon flux toward the shikimate‐derived aromatic amino acids tyrosine and tryptophan. Accumulation of Phe did not lead to an increase in flux toward phenylacetaldehyde, for which Phe is a direct precursor. Metabolic flux analysis revealed this to be due to the presence of a distinct metabolically inactive pool of Phe, likely localized in the vacuole. We have identified a vacuolar cationic amino acid transporter (PhCAT2) that contributes to sequestering excess of Phe in the vacuole. In vitro assays confirmed PhCAT2 can transport Phe, and decreased PhCAT2 expression in PAL‐RNAi transgenic plants resulted in 1.6‐fold increase in phenylacetaldehyde emission. These results demonstrate mechanisms by which plants maintain intercompartmental aromatic amino acid homeostasis, and provide critical insight for future phenylpropanoid metabolic engineering strategies.  相似文献   
104.
The perhumid coastal temperate rainforest (PCTR) of southeast Alaska has some of the densest soil organic carbon (SOC) stocks in the world (>300 Mg C ha?1) but the fate of this SOC with continued warming remains largely unknown. We quantified dissolved organic carbon (DOC) and carbon dioxide (CO2) yields from four different wetland types (rich fen, poor fen, forested wetland and cedar wetland) using controlled laboratory incubations of surface (10 cm) and subsurface (25 cm) soils incubated at 8 and 15 °C for 37 weeks. Furthermore, we used fluorescence characterization of DOC and laboratory bioassays to assess how climate-induced soil warming may impact the quality and bioavailability of DOC delivered to fluvial systems. Soil temperature was the strongest control on SOC turnover, with wetland type and soil depth less important in controlling CO2 flux and extractable DOC. The high temperature incubation increased average CO2 yield by ~40 and ~25% for DOC suggesting PCTR soils contain a sizeable pool of readily biodegradable SOC that can be mineralized to DOC and CO2 with future climate warming. Fluxes of CO2 were positively correlated to both extractable DOC and percent bioavailable DOC during the last few months of the incubation suggesting mineralization of SOC to DOC is a strong control of soil respiration rates. Whether the net result is increased export of either carbon form will depend on the balance between the land to water transport of DOC and the ability of soil microbial communities to mineralize DOC to CO2.  相似文献   
105.
106.
A major challenge in neuroscience is linking behavior to the collective activity of neural assemblies. Understanding of input-output relationships of neurons and circuits requires methods with the spatial selectivity and temporal resolution appropriate for mechanistic analysis of neural ensembles in the behaving animal, i.e. recording of representatively large samples of isolated single neurons. Ensemble monitoring of neuronal activity has progressed remarkably in the past decade in both small and large-brained animals, including human subjects. Multiple-site recording with silicon-based devices are particularly effective because of their scalability, small volume and geometric design. Here, we describe methods for recording multiple single neurons and local field potential in behaving rodents, using commercially available micro-machined silicon probes with custom-made accessory components. There are two basic options for interfacing silicon probes to preamplifiers: printed circuit boards and flexible cables. Probe supplying companies (http://www.neuronexustech.com/; http://www.sbmicrosystems.com/; http://www.acreo.se/) usually provide the bonding service and deliver probes bonded to printed circuit boards or flexible cables. Here, we describe the implantation of a 4-shank, 32-site probe attached to flexible polyimide cable, and mounted on a movable microdrive. Each step of the probe preparation, microdrive construction and surgery is illustrated so that the end user can easily replicate the process.  相似文献   
107.
The rare disease cerebrotendinous xanthomatosis (CTX) is due to a lack of sterol 27-hydroxylase (CYP27A1) and is characterized by cholestanol-containing xanthomas in brain and tendons. Mice with the same defect do not develop xanthomas. The driving force in the development of the xanthomas is likely to be conversion of a bile acid precursor into cholestanol. The mechanism behind the xanthomas in the brain has not been clarified. We demonstrate here that female cyp27a1−/− mice have an increase of cholestanol of about 2.5- fold in plasma, 6-fold in tendons, and 12-fold in brain. Treatment of cyp27a1−/− mice with 0.05% cholic acid normalized the cholestanol levels in tendons and plasma and reduced the content in the brain. The above changes occurred in parallel with changes in plasma levels of 7α-hydroxy-4-cholesten-3-one, a precursor both to bile acids and cholestanol. Injection of a cyp27a1−/− mouse with 2H7-labeled 7α-hydroxy-4-cholesten-3-one resulted in a significant incorporation of 2H7-cholestanol in the brain. The results are consistent with a concentration-dependent flux of 7α-hydroxy-4-cholesten-3-one across the blood-brain barrier in cyp27a1−/− mice and subsequent formation of cholestanol. It is suggested that the same mechanism is responsible for accumulation of cholestanol in the brain of patients with CTX.  相似文献   
108.
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号